翻訳と辞書
Words near each other
・ Bocking's Elm
・ Bockkarkopf
・ Bockleton
・ Bockman
・ Bockmer End
・ Bockrath
・ Bockris
・ Bocksberg (Harz)
・ Bocksbeutel
・ Bockscar
・ Bocksdorf
・ Bockstadt
・ Bockstael metro station
・ Bockstael railway station
・ Bockstein homomorphism
Bockstein spectral sequence
・ Bocksten Man
・ Bocktenhorn
・ Bocktschingel
・ Bockum
・ Bockwurst
・ Boclair Academy
・ BOclassic
・ Boclod
・ BOCM
・ BOCM Pauls
・ Boco
・ Boco River
・ Boco, Les Anglais, Haiti
・ Bocoa


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bockstein spectral sequence : ウィキペディア英語版
Bockstein spectral sequence
In mathematics, the Bockstein spectral sequence is a spectral sequence relating the homology with mod ''p'' coefficients and the homology reduced mod ''p''. It is named after Meyer Bockstein.
== Definition ==
Let ''C'' be a chain complex of torsion-free abelian groups and ''p'' a prime number. Then we have the exact sequence:
:0 \to C \overset\to C \overset\to C \otimes \mathbb/p \to 0.
Taking integral homology ''H'', we get the exact couple of "doubly graded" abelian groups:
:H_
*(C) \overset\to H_
*(C) \overset \to H_
*(C \otimes \mathbb/p) \overset \to .
where the grading goes: H_
*(C)_ = H_(C) and the same for H_
*(C \otimes \mathbb/p), \operatorname i = (1, -1), \operatorname j = (0, 0), \operatorname k = (-1, 0).
This gives the first page of the spectral sequence: we take E_^1 = H_(C \otimes \mathbb/p) with the differential \to D^r \overset and \operatorname \to \mathbb \to \mathbb/p \to 0, we get:
:0 \to \operatorname_1^/p) \to D_n^r \overset\to D_n^r \to D_n^r \otimes \mathbb/p \to 0.
This tells the kernel and cokernel of D^r_n \overset\to D^r_n. Expanding the exact couple into a long exact sequence, we get: for any ''r'',
:0 \to (p^ H_n(C)) \otimes \mathbb/p \to E^r_ \to \operatorname(p^ H_(C), \mathbb/p) \to 0.
When r = 1, this is the same thing as the universal coefficient theorem for homology.
Assume the abelian group H_
*(C) is finitely generated; in particular, only finitely many cyclic modules of the form \mathbb/p^s can appear as a direct summand of H_
*(C). Letting r \to \infty we thus see E^\infty is isomorphic to (\text H_
*(C)) \otimes \mathbb/p.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bockstein spectral sequence」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.